miR-8 microRNAs regulate the response to osmotic stress in zebrafish embryos

نویسندگان

  • Alex S. Flynt
  • Elizabeth J. Thatcher
  • Kristopher Burkewitz
  • Nan Li
  • Yinzi Liu
  • James G. Patton
چکیده

MicroRNAs (miRNAs) are highly conserved small RNAs that act as translational regulators of gene expression, exerting their influence by selectively targeting mRNAs bearing complementary sequence elements. These RNAs function in diverse aspects of animal development and physiology. Because of an ability to act as rapid responders at the level of translation, miRNAs may also influence stress response. In this study, we show that the miR-8 family of miRNAs regulates osmoregulation in zebrafish embryos. Ionocytes, which are a specialized cell type scattered throughout the epidermis, are responsible for pH and ion homeostasis during early development before gill formation. The highly conserved miR-8 family is expressed in ionocytes and enables precise control of ion transport by modulating the expression of Nherf1, which is a regulator of apical trafficking of transmembrane ion transporters. Ultimately, disruption of miR-8 family member function leads to an inability to respond to osmotic stress and blocks the ability to properly traffic and/or cluster transmembrane glycoproteins at the apical surface of ionocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperosmotic stress activates the expression of members of the miR-15/107 family and induces downregulation of anti-apoptotic genes in rat liver

microRNAs are an abundant class of small non-coding RNAs that negatively regulate gene expression. Importantly, microRNA activity has been linked to the control of cellular stress response. In the present study, we investigated whether the expression of hepatic microRNAs is affected by changes in ambient osmolarity. It is shown that hyperosmotic exposure of perfused rat liver induces a rapid up...

متن کامل

miR-126 regulates angiogenic signaling and vascular integrity.

Precise regulation of the formation, maintenance, and remodeling of the vasculature is required for normal development, tissue response to injury, and tumor progression. How specific microRNAs intersect with and modulate angiogenic signaling cascades is unknown. Here, we identified microRNAs that were enriched in endothelial cells derived from mouse embryonic stem (ES) cells and in developing m...

متن کامل

MicroRNA-125b is a novel negative regulator of p53.

The p53 transcription factor is a key tumor suppressor and a central regulator of the stress response. To ensure a robust and precise response to cellular signals, p53 gene expression must be tightly regulated from the transcriptional to the post-translational levels. Computational predictions suggest that several microRNAs are involved in the post-transcriptional regulation of p53. Here we dem...

متن کامل

Zebrafish miR-1 and miR-133 shape muscle gene expression and regulate sarcomeric actin organization.

microRNAs (miRNAs) represent approximately 4% of the genes in vertebrates, where they regulate deadenylation, translation, and decay of the target messenger RNAs (mRNAs). The integrated role of miRNAs to regulate gene expression and cell function remains largely unknown. Therefore, to identify the targets coordinately regulated by muscle miRNAs in vivo, we performed gene expression arrays on mu...

متن کامل

MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling

MicroRNAs (miRs) are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA) as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. T...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 185  شماره 

صفحات  -

تاریخ انتشار 2009